
Code Runner Extension
Final Report

by

Dian LIN

ID:6916490

UPI:dlin368

BTech 451
Information Technology

in
Bachelor of Technology

The University of Auckland

Supervisor: Dr. Wannes van der Mark, Dr. Tariq Khan

ABSTRACT

Code Runner provides an on-line platform for students to complete
their programming assignments. It supports different programming
languages. It is widely used at the University of the Auckland for
courses from Stage One to Stage Three. To enable each student to
complete their assignments individually, this study aims to research
different ways of Code Runner assignments cheating. The goal is to ex-
tend Code Runner to have parameterized exercises so that each student
is presented with unique exercises. The outcome ideas from research
results will be implemented into the platform in order to make cheating
more difficult in Code Runner.

Contents

1 Introduction 1

1.1 Code Runner . 1

1.2 MySQL . 2

1.3 Vulnerability to Cheating . 3

1.4 Study Outline . 4

2 Brain Storm 5

2.1 Research Part . 5

2.1.1 Similarity Checking without Comments 5

2.1.2 Programming Variation . 5

2.1.3 Question Recycling . 5

2.2 Implementation Part . 6

2.2.1 Similarity Checking with Comments 6

2.2.2 Functionality Addition . 6

3 Research 8

3.1 Similarity Checking Research (without Comments) 8

3.1.1 Research Process . 8

3.1.2 Analysis . 8

3.1.3 Conclusion . 9

3.2 Programming Variation Research . 9

3.2.1 Research Process . 9

3.2.2 Analysis . 11

3.2.3 Conclusion . 12

3.3 Questions Recycling . 12

i

ii

3.3.1 Research Process . 12

3.3.2 Research Data . 13

3.3.3 Analysis . 13

3.3.4 Conclusion . 13

4 Anti-cheat Idea Description 16

4.1 Personalized Assessment . 16

4.2 Similarity Checking with comments 16

5 Mock Up 17

5.1 Proof of Concept . 17

5.2 GUI Mock-up Implementation . 18

5.3 Functionality Build-in . 20

5.3.1 Preparation . 20

5.3.2 Functionality of Prototype . 20

6 Prototype Testing 26

6.1 Insertion Testing . 26

6.2 Student Answer Testing . 26

6.3 Deletion Testing . 28

7 Code Runner Structure Revision 31

7.1 PHP Files Review . 31

7.2 Coding Structure . 32

8 Code Runner Implementation 33

8.1 User Interface Realization . 33

8.2 New Database Table Creation and Schema Definition 35

8.3 Functionality Implementation in Code Runner 38

8.4 Conclusion . 38

9 Similarity Check With Comments Implementation 41

9.1 Preparation . 41

9.2 Implementation of Similarity Checking in Code Runner 42

9.3 Analysis . 44

9.4 Conclusion . 45

iii

10 Limitation and Summary 46

10.1 Objective Evaluation . 46

10.2 Conclusion . 47

10.3 Future Work . 47

Bibliography 49

Appendices 50

.1 Code Runner Structure . 51

.2 Random Selection of Options . 51

.3 Time Penalty Test . 51

.4 Similarity Checking . 52

.5 Summary Similarity Table in Appendices 54

Chapter 1

Introduction

Moodle is an open-source Learning Management System(LMS) [1], and is an open-
source platform. At the moment, Moodle is extensively used in schools and tertiary
institutions in Australia and New Zealand. It is also widely used in Europe, especially
in Spain and the U.K. The core of Moodle is courses that contain activities and re-
sources, including about 20 different types of activities available such as assignments,
quizzes, choices etc [2].

At the Department of Computer Science of the University of Auckland, it is used
for programming exercises. Programming assignments usually require environments
installation such as Java. Moodle provides a way for students to easily complete their
assignments without the installation of programming software and environment path
setting but can only be used in browsers. Hence, Moodle is one of the most important
tools in the Department of Computer Science to test students learning abilities. It can
be used to set up coding assignments, multiple-choice questions and simple quizzes.
Moodle is able to run the input source code in the background and immediately gives
feedback to participants about their submission. For teachers, this activity-based
model combines the activities into sequences and groups. It helps teachers to guide
participants. Also, Moodle contains auto-grading and group courses functionalities,
which saves the efforts of the manual. It is for this reason that Code Runner being
widely accepted by people through the department.

1.1 Code Runner

Code Runner [3] is a Moodle question type that requests students to submit program
code to some given specification such as Java or Python function. At the University
of Auckland, Code Runner is the main reason for using Moodle, as lecturers or ad-
ministrators can simply post questions by defining question contents and test cases
under specific course list as the assignment build-up. The Sandbox is used to run a

1

2

series of test cases for input source code under limited time whilst preventing infi-
nite loops or deadlocks from blocking the system. The outputs are compared with
expected answers and used to automatically mark the assignment works upon given
a marking guide. The use of Sandbox keeps Code Runner safe since it effectively
prevents malicious code injection, which is guarding the system.

Every participant should be able to pass all test cases that are pre-defined by ques-
tion creators in order to gain the full marks. Code Runner becomes a convenient and
useful tool, because it helps students getting more and more familiar with testing
topics introduced in lectures. And encouraging students to gain more marks in terms
of splitting a large assignment into several simple questions.

Moodle provides a large database for Code Runner to store data. Each question cre-
ation will create a new record inserted into Moodle database(MySql Database, will
be mentioned in the following section), and instead of searching created questions
in Code Runner website, authorised people could simply look up and modify every
question details by SQL statement. To connect Code Runner with Database Manage-
ment System(DBMS), Code Runner becomes more feasible to handle its functionality.

The output of different feedback from Code Runner is presented in Figure 1.1.

Figure 1.1: Code Runner output feedback of correct and wrong answers

1.2 MySQL

MySql is an open-source Relational Database Management System(RDBMS), and
written in C and C++ [6]. As the advantage of MySql, it is allowed users to create

3

relationships between tables by primary keys and foreign keys. This feature helps the
database become more consistent, with users being able to look for particular data
quickly. In Moodle, with lots of data needing to be recorded and tracked, MySql
database is a suitable tool to manage the platform.

1.3 Vulnerability to Cheating

Code Runner is an online tool that automatically tests and marks students’ assign-
ments by comparing answers to predefined outputs. This is a significant weakness
of Code Runner because it is not able to detect cheating. Students could simply
copy-paste the source code from someone else who holds the same question and was
already passed all test cases. Those students would be able to gain the marks with-
out putting any effort. Assignments cheating is not allowed by the University. Some
damaging effects would be caused by Code Runner assignments cheating including:

• Being unfair to hard working students and lecturers:

Most students in the University put lots of efforts on their assignments, and
usually spend time on studying and preparing assignments. It is quite unfair
for those students who are hard-working to be getting the same grade as those
who are cheating on assignments. Also, lots of effort is put by lecturers to pre-
pare teaching materials and create assignments. If cheating becomes possible,
it would be unfair to lecturers as well.

• A loss of faith in Code Runner:

This would have a significant effect impact on the University. Once cheat-
ing becomes a possible way to solve the assignments, the quality of students is
not able to be evaluated. The reputation of the University will be reduced due
to students losing their faith in Code Runner.

• More students being able to cheat on assignments in Code Runner:

If cheating is allowed in Code Runner, more students would cheat in order
to cut down on time spent on the assignment. As students could get the same
grade even they cheat, the learning ability of students is poor. Even though
cheating students could pass the course, it does not mean that those students
have obtained the knowledge that required by the course.

The basic principle of whatever assignments or Code Runner tests at the Univer-
sity of Auckland is that it encourages students to do individual works in order to
obtain the skills and ideas that required by the courses. Therefore, if Code Runner

4

is going to be treated as one of the main assignment parts, it is necessary to push up
barriers against cheating in Code Runner.

1.4 Study Outline

In this project, we will first research on the Code Runner program before idea imple-
mentation. In research, useful information will be obtained, and become the guideline
to implement ideas properly, so that we will not waste our time on unnecessary cod-
ing. Based on research results, the following ideas’ implementation would be much
simpler and easier because of the corrected guide direction. The workflow indicates
what the steps of the project will be:

Figure 1.2: Study flow chart

Chapter 2

Brain Storm

Before we starting research and ideas implementation, some of the new ideas should
be generated to provide a direction for barriers build-up against cheating.

2.1 Research Part

2.1.1 Similarity Checking without Comments

This straightforward idea is to check the source code for similarity. Due to different
courses would have different assignments, the assignment difficult may differ to each
other. Based on course requirements, setting up similarity tolerance between source
codes is one barrier to against cheating.

2.1.2 Programming Variation

For the same programming language, source code could be possibly found from web-
sites. To determine if the answers to Code Runner questions could be easily found
on the website, some research would have to be done.

2.1.3 Question Recycling

Code Runner will store student answers from previous years. If question creators reuse
questions which were tested last semester or in previous years, it actually provides
a way for current students to copy the answers from previous years from someone
else who has done the paper. This is definitely unfair. This anti-cheat idea requires
research to see how many or what percentage questions would be reused, then make
a decision on whether previous answers should be cleaned or not from Code Runner
database.

5

6

2.2 Implementation Part

2.2.1 Similarity Checking with Comments

The similarity checking is actually a basic way to identify if participants cheat in
assignments. Instead of simply checking the source code of submissions, there is a
possibility of requiring students to add comments to their programs. Since comments
added depend on personal thoughts, it is highly likely to expect that the similarity
would be reduced a lot, despite the size of the assignments being short. In the
University, assignments aim to help students to have a better understanding on each
concept taught in lectures and improve their learning skills. After this requirement
is added into Code Runner, this goal will have been more or less achieved. It is
also obvious to see who is cheating in Code Runner. However, the downside of this
idea is that, in order to check similarities among more than 2 submissions, each
time we will have to check a new submission with the rest of submissions to see the
similarity percentage. This is actually a Brute Force approach, so a time penalty will
be occurred. Therefore, time penalty and idea performance tests in Code Runner
have to be done.

2.2.2 Functionality Addition

Additional functionality could be added into the Code Runner platform (code imple-
mentation) so that Code Runner is able to have several options for one question, and
that each option has a similar difficulty to the others. Assigning each option to every
student, in this case, would result in the students having different questions(options),
which reduces the possibility of assignment cheating. The Table 2.1 and Table 2.2
give a layout of ideas.

Based on Table 2.1, the same assignment handout could possibly cause two ways
of cheating, copy-pasting and asking for someone else’s coding respectively. In both
cases, they are easily done. The prevention for copy-paste is to check the similarity
between submissions. However, there is no guarantee that similarity between sub-
missions in Code Runner is relatively low, it is necessary to do a research in order
to determine if the similarity checking is a feasible way against copy-paste cheating.
On the other hand, the prevention of biological cheating is also easily prevented but
requires extra time for tutors or lecturers to make assignment interview. Ensure that
students are able to answer questions individually.
Based on Table 2.2, different assignment handouts become harder to be prevented
but more efficient. Students are looking for similar solutions from someone else or
search source code online. The difficulty of similar solutions search is intermediate as
we could create as many as possible assignments and assign to everyone. In this case,
there is no guarantee that no one will cheat but the probability of cheating will be
reduced, and that is what we supposed to achieve. The other cheating way is to search
online solution, this cheating way can be also happened in same assignment handout.
But rather than search online, if students are being assigned the same assignment,
it is more likely to look for the solution around them. The difficulty of search so-
lution online is hard, as people could search different programming languages and

7

Table 2.1: Same Assignment

Cheating ways Difficulty Prevention Changes Feasibility

Submission
Copy and
paste

Easy Similarity
checking

Sandbox to
check codes
similarity

Common
way against
cheating.
Research
required

Others
who have
finished
assign-
ment
coding for
students

Easy Assignment
interview

Extra time
required

Further discussion

Table 2.2: Different Assignments

Cheating ways Difficulty Prevention Changes Feasibility

Looking
for similar
solutions

Intermediate Everyone
has unique
assignment

Create
more vari-
ants in one
question

Unique
assignment
reduces
cheating
probability

Online so-
lutions or
languages
transla-
tion

Hard Pre-defined
questions
preferred

define class
used in
Code Run-
ner

Research
required to
see if it’s
feasible

make language translation. Even though programming translation is an unavoidable
personal skill, there is still no guarantee that people with high programming skill will
not cheat. Pre-defined questions are much more preferred in this case but it requires
research to see if it is feasible.

Chapter 3

Research

Each research for this chapter was conducted in ground lab room, Department of
Computer Science, the University of Auckland.

3.1 Similarity Checking Research (without Com-

ments)

3.1.1 Research Process

This study will focus on the coding part in Code Runner. Most Code Runner users
are Stage One students, and programming coding is the main part for those Code
Runner students. In order to reduce the research error, the obtained dataset should
follow some basic rules including:

• People from different backgrounds who did not know each other.

• Source code obtained should be comparable.

• Source code with different lengths should be selected including longest and
shortest ones.

3.1.2 Analysis

In order to compare the similarity between different source codes, CopyScape [4] is
used to determine the similarity in percentage.

The shortest code length which is 3 coding lines is firstly being checked, the similarity
is 100%, which is normally acceptable due to short program length. Then different
source codes with different lengths are compared, the average similarity percentage

8

9

reaches 77%, while the longest program gives the similarity with around 56.5%. There
is a high probability that Code Runner submissions are similar even though student
are not cheating. The summarized statistic table is presented below:

Table 3.1: Summarized Table
Program Length Similarity Percentage

3 (shortest) 100%
3 lines - 67 lines 68% - 77%

67 lines 56.5%
Median length: 30 lines Median similarity: 76.7%

Therefore, students who use Code Runner for assignments normally write very short
programs. We determined that the median coding length in Code Runner is around 25
to 30 lines. This implies that high percentage similar of the submissions would occur.
Furthermore, all courses are using the same question for all participants. Since stu-
dents in each course were lectured by same lecturers, reading the same slides, attend
same tutorials and see same examples, it is highly likely to have the high similarity
coding results if the median program length is relatively short. In this case, even
though students are not cheating each other, a high similarity is still possible.

3.1.3 Conclusion

Similarity checking without comments in Code Runner server is not a feasible anti-
cheating approach. A high similarity between submissions due to short program
length, questions are same and the solution is mostly based on lecture topics.

3.2 Programming Variation Research

3.2.1 Research Process

Three example types of questions were selected for our research. Instead of random
selection, we selected questions from the typical topics, such as the recursive ques-
tion, pre-defined question. Also, three common but popular sorting ways, Bubble-
sort, Insertion-sort and Merge-sort, which is an important topic, were selected as well.

After question selection, we started searching the solutions or available sources on the
website. Although Python is used for Stage one courses coding, different solutions
of programming languages were still searched. First of all, three sorting algorithms
were targeted, the answers(source code) that presented below and would be able to
pass to Code Runner questions as these codes have passed all test cases that we used

10

to test the code accuracy. Three search terms and quantitative data of hits to pages
are presented in Figure 3.1, Figure 3.2, Figure 3.3.Three searched source codes are
presented in Figure 3.4, Figure 3.5, Figure 3.6 [5].

Figure 3.1: Search term and hits to pages for Bubble-sort

Figure 3.2: Search term and hits to pages for Insertion-sort

Figure 3.3: Search term and hits to pages for Merge-sort

Figure 3.4: Searched source code for Bubble-sort

Secondly, solutions of the recursive algorithm for a sum-up question has been searched
from the website. It provides the solution and explanation from more than one pro-
gramming language for the recursive algorithm of sum-up including Python, Java,etc.
Research term and hits to pages are presented in Figure 3.7. The Source code is pre-
sented in Figure 3.8 [5].
However, solutions of pre-defined questions were not easy to search as each pre-defined
question requires using the same method and variable names from class which has
already defined by question creators.

11

Figure 3.5: Searched source code for Insertion-sort

Figure 3.6: Searched source code for Merge-sort

Figure 3.7: Search term and hits to pages for sum recursive

3.2.2 Analysis

Based on the result of research and source obtained, students were asked to solve the
questions that based on lecture topics in Code Runner. Because questions could be
popular or rare, solutions of popular topics are easily found out while rare ones could

12

Figure 3.8: Searched source code for recursive

only obtain the general description. By considering three sorting ways in the research,
the full source code can be found on the websites. it is easy to do programming
languages translation by translating known code to other languages. It reveals that
programming languages translation is an unavoidable personal skill which is not able
to be detected by Code Runner. One the other hand, if we look at the research result
of pre-defined questions. Code Runner actually defines its own class for students
to solve the question based on the unique variables and method names which were
already provided by questions. In this case, it is highly unlikely to get the full source
code but conception from the Internet, which is helpful for Code Runner participants
as it encourages students to solve the problems independently by reviewing the lecture
slides, recordings, and try to understand the provided class.

3.2.3 Conclusion

Answers to Code Runner questions are possibly being obtained on the websites. The
programming languages translation skill cannot be detected by Code Runner. Pre-
defined questions become a preferred question creation way in Code Runner, it pre-
vents students from searching source code online, instead, encourages participants
to do more revision and learn themselves (individual works). This implies that pre-
defined type is another barrier against cheating, and should be widely used in Code
Runner. However, it can’t prevent copy-paste cheating, hence, functionalities should
be implemented into Code Runner platform.

3.3 Questions Recycling

3.3.1 Research Process

In case of this research section, lab assignments of one Computer Science course
in Code Runner are used as the research objects. For each lab assignment of each
semester, the general question ideas have been noted. And question similarity check
will be done after practical research has been finished. There are 8 lab assignments
and 10 lab assignments are all noted for Summer School and Semester 1 of 2015
respectively. Also, test cases for each question are noticed.

13

3.3.2 Research Data

There are totally 40 questions for Summer School lab assignment and totally 41
questions for Semester1 lab assignment in Code Runner. By analyzing the noted
data, there are 35 questions are exactly matching, in other words, around 85% of
questions have been reused. Furthermore, 34 questions used the exactly same test
cases, and only one reused question has been redefined its test cases. Also, for the
rest of 6 questions, 3 of them actually reuse the answer from previous question. The
data are presented in Table 3.2 and questions reviewed are presented in Figure 3.9
and Figure 3.10.

Table 3.2: Question and Testcases Reused

No. of Questions Percentage

Question reused 35 85%
New defined question 6 15%

Total questions 41 100%
Test Cases reused 34 83%

New defined test cases 7 17%
Total test cases 41 100%

3.3.3 Analysis

Based on the research result, it is highly likely to see that most question creators
reuse the question data from previous years. Also, it believes that question creators
would simply move a number of questions from pre-defined Question Bank without
changing question definition or background test cases. It not only makes question
creation easier, instead, it actually provides an invisible way for cheaters to get an
unfair pass.

3.3.4 Conclusion

Therefore, in order to efficiently prevent cheating in Code Runner, it is necessary to
clean the Code Runner database records from previous years, especially answers. Or
at least, students views are not able to display their codes any more after the semester
ends. So that students cannot use these answers to cheat in Code Runner.

14

Figure 3.9: Question revision for Semester one of 2015

15

Figure 3.10: Question revision for Summer School of 2015

Chapter 4

Anti-cheat Idea Description

4.1 Personalized Assessment

The idea here is to create more than one option for each question creation, and each
option contains different variants. For example, lecturer or administrator could cre-
ate Boolean question with options Even and Odd, for each option, has its own test
cases and expected answers. Then assigning options to different students to make
sure every student is offered different assignments. In this case, the probability of
assignment cheating will be reduced, and one barrier against cheating is pushed up.
The requirements of the implementation are shown below.

Requirements:

• Even difficulty for assignment variants.

• Being easy to use.

• Maintain the functionality that Code Runner normally has.

• Being possible to integrate Moodle/CodeRunner.

4.2 Similarity Checking with comments

We have shown that similarity checking is not a feasible way to detect plagiarism due
to limited size of coding assignments in Code Runner. However, comments could be
used to add more distinction.
This idea aims to check the similarity between commented submissions from students
and output feedback in percentage for each newest submission. After all submissions
have been submitted, a brief summary table of similarity would be generated, and
display the highest similarity percentage of each submission by comparing to the rest
of ones.

16

Chapter 5

Mock Up

The most promising idea to implement for Code Runner is shown in Chapter 4 “Per-
sonalized assessment” Section to make sure every participant gets different questions
in Code Runner. In order to realize this idea, more functionalities should be added
to question creation page in Code Runner.

5.1 Proof of Concept

The idea above relates to question creation page but other functionalities are possible
to remain the same as what they used to be in Code Runner. Since Code Runner is a
large question type in Moodle, the modification in question creation page would cause
impacts on relative classes and variables. Hence, lots of works will have to do in order
to build up the barrier. As so far, no evidence shows that if the implementation will
make it work in Code Runner, thus a prototype test should be made before moving
to Code Runner. Here we will use Java to build the prototype.
For the prototype, the GUI mock-up should be same as Code Runner but additional
’Option’ input area for question creators. Also, it might be good to keep question op-
tions in the teachers’ interface to show all question variants. While student interface
should be equivalent as Code Runner presents currently.

Java is chosen as the language to build up the prototype, as an open source library in
Java, JComponent is used to build the interface. The GUI can be presented properly
using two components of JComponent, JFrame and JPanel. Java connection library
allows Java programming to easily and fast connect to MySql database that Code
Runner uses to maintain all question variants. Since building up a connection be-
tween MySql database and prototype is the most significant step.

The following images show the interface of question creation that presents in Code
Runner, which is what the prototype supposes to have as the outcome.

17

18

Figure 5.1: Question Creation page in Code Runner

Figure 5.2: Question Creation page in Code Runner

As what have presented above, question name, question description and test cases
are all necessary parts that will be inserted into MySql database for students answer
comparison. Therefore, the prototype not only has to present proper GUI mock-up,
but also make it functional, which indicates that all inputs from question creation
text area in GUI mock-up should be inserted into corresponding tables as what Code
Runner does, and should be able to run students input as Java programming.

5.2 GUI Mock-up Implementation

JFrame and JPanel in Java library are mainly used to present interface of question
creation, “Option” functionality is added into the interface, and for each option cre-
ated, the variants records for the option will be inserted into local table (JTable, not
MySql database at the moment) which allows teachers to view all variants of corre-
sponding options created. Furthermore, “Preview” button will bring teacher view to
student view(the interface from student version) for further testing. The prototype

19

interface shows below.

Figure 5.3: Question Creation page at GUI mock-up

The variants in teachers view (local database) will be stored once option created and
displayed at question creation page, shows below(Odd and Even options as the ex-
amples).

Figure 5.4: Local variants database(JTable)

The student view can be shown up by “preview” function which is also available in
Code Runner. The emulated student assignment view shows in Figure 5.5.

After GUI mock-up creation, the basic framework of Code Runner prototype is suc-
cessfully implemented, and ready to build functionality into GUI mock-up so that
it is able to deal with the input data and output comparison as what Code Runner
does.

20

Figure 5.5: Student question view

5.3 Functionality Build-in

5.3.1 Preparation

Before implementing the functionality, MySql database schema and relationships need
to be reviewed, as all data display in Code Runner are retrieved from the database.
By adding questions to a specific course, 4 tables are modified, which indicates that
those 4 tables are related to question creation and answers comparison. Because the
expected outputs are also defined in question creation part, thus when implementing
functionality build-up, question variants inputs should be treated as records and
inserted into corresponding tables as Code Runner did for further discussion. The
following 4 circled tables in MySql database will be used.

5.3.2 Functionality of Prototype

DataBase Schema

The database schema of 4 tables above are needed, to insert records into the corre-
sponding tables. The following 4 tables(Table 4.1-Table 4.4) present the schema for
each useful header that probably be used in further.

21

Figure 5.6: MySql database tables

Table 5.1: mdl question schema

Field Type Null Key

id bigint(10) No PRI
category bigint(10) No MUL

name varchar(255) No MUL
questiontext longtext No

qtype varchar(20) No

Table mdl question above gives several headers that used in question creation part.
This is the question table which maintains all questions id including Code Runner
questions etc. Header category indicates the course number in Code Runner such as
Compscixxx. Headers name and questiontext give the question name and question
description. The qtype in this project is defined as keyword “CodeRunner”.

Table 5.2: mdl question categories schema

Field Type Null Key

id bigint(10) No PRI
name varchar(255) No

contextid bigint(10) No MUL

Table mdl question categories gives the course description with id as primary key
and maintains the course name.

Table mdl question coderunner tests links the question test cases to correspond-

22

Table 5.3: mdl question coderunner tests schema

Field Type Null Key

id bigint(10) No PRI
questionid bigint(10) No MUL
testcode longtext YES

stdin longtext YES
expected longtext YES

mark decimal(8,3) No

ing questions by building up the relationship chain. Header testcode stores the test
cases. stdin and expected headers indicate the sample answer and expected output
for each test case respectively. The header mark in Code Runner question type is
using “allornothing” model which means students are able to gain full mark only if
their submission passes all test cases, otherwise zero.

Table 5.4: mdl question coderunner options schema

Field Type Null Key

id bigint(10) No PRI
questionid bigint(10) No MUL

coderunnertype varchar(255) NO MUL
prototypetype tinyint(1) No MUL
allornothing tinyint(1) NO

Table mdl question coderunner options gives the options for question creation in Code
Runner. The coderunnertype provides the options of programming languages such as
Java, Python. The prototypetype normally is defined as 1 if the question is created
and allornothing is the one that has been declared above.

The Entity Relationship Diagram(ERD) for above four tables are presented in Fig-
ure 5.7.
After related schema have been checked, the functionality is now ready to implement.

Functionality Implementation

Based on the database schema above, in the prototype, necessary SQL should be
coded to make sure that each button click will lead to records insertion or deletion

23

Figure 5.7: Relationship of tables

from MySql Database. For example, for each time the “Save” button is clicked,
the SQL presented in Figure 5.8 will be executed by MySql Database connection to
insert input variants. Where “Default for CS101” is the already existed course in
Code Runner.

For “Deletion” button clicked, corresponding records in the local database and

Figure 5.8: insertion SQL in java program

MySql Database server should be both removed. The SQL statement presented in
Figure 5.9 will be executed by MySql Database server to delete the selected record.

24

Furthermore, refer to Figure 5.5, the student’s input should be added into a runnable

Figure 5.9: deletion SQL in java program

Java program once “submit” button is clicked. The prototype should be able to run
students input at the background and bring the feedback immediately. By checking
the way that Code Runner did is to create a new Java file contains student’s input
and run the file at the Sandbox, which is presented in Figure 5.10.

Figure 5.10: deletion SQL in java program

In order to follow the way that Code Runner did, the codes presented in Figure 5.11
will create a java file which contains student input and executed it at the Java Running
Environment(JRE). Finally, the program will retrieve the expected answer by unique
questionid from MySql Database server and compare answers in order to bring the
feedback to the terminal.
By now, it seems proof-of-concept process has been done, all required user interfaces

25

Figure 5.11: Java file making code in java program

and functionality have been implemented in Java. The next step should bring the
proof-of-concept program to testing part in terms of checking MySql Database records
and answers comparison results.

Chapter 6

Prototype Testing

In order to test whether question variants from text area of GUI mock-up are suc-
cessfully inserted into MySql Database server and the deletion works, we have to go
back to corresponding tables for records checking.

6.1 Insertion Testing

Based on GUI mock-up, Figure 6.1 shows the pen-testing input for question creation.
After all variants from text areas are saved, MySql Database shows that records from
corresponding tables that declared above have been modified. Inserted records have
been circled in Figure 6.2. Refer to input variants, the inserted records are the data
from the question that we just created. Therefore, the insertion has been successfully
completed.

6.2 Student Answer Testing

After the question has been created and inserted into the server, we go to student
question view to check whether the program is able to create Java file contains stu-
dent answer and run the new student Java program at the background. Figure 6.3
presents the testing code which refers to the question that just created. Afterward, a
new Java file contains the testing code has been created and presented in Figure 6.4.

After the “Submit” button that displays is clicked in Figure 5.3, the feedbacks bring
back to the terminal for both correct and incorrect answers, which is presented in
Figure 6.5 and Figure 6.6 respectively.
By now, variants creation and partial sandbox functionality(read and execute stu-
dents’ input) are both working well and able to connect MySql Database server, since
the created variants are able to present to students and insert to the database tables.

26

27

Figure 6.1: Testing variants input

Figure 6.2: Insertion check

28

Figure 6.3: Testing code input

Figure 6.4: Created Java program

Also, the prototype is able to execute answer from students and provide feedback to
the terminal. As Code Runner is also able to remove unnecessary variants from the
server, which takes us to the last testing step.

6.3 Deletion Testing

Refer to GUI mock-up, the local database table (JTable) gives all the variants that cre-
ated, if the deletion has been successfully done, record in JTable and MySql Database

29

Figure 6.5: Feedback for correct answer

Figure 6.6: Feedback for incorrect answer

30

will be both removed after “delete” button being clicked.
From Insertion Testing part, it shows that Odd option has been inserted, thus in
this part, Odd option becomes the deleting variant. After “delete” button has been
clicked, 4 tables that show in Figure 5.2 is going to be checked again, the inserted
variants disappeared which implies that deletion command in the prototype works in
MySql Database server. Figure 6.7 presents the deletion testing result.

Figure 6.7: Deletion testing

Combining all testing results above, the prototype is able to provide proper interfaces
and deal with question creation, deletion and answers comparison tasks as exactly
what Code Runner does. Proof-of-concept has been successfully completed in Java.
This process proves that the idea from the Brain Storm part is possible to imple-
ment in Code Runner site as Moodle is an open-source platform and MySql Database
schema matches and allows incoming data from outside. The next step will have to
bring the idea from prototype to Code Runner.

Chapter 7

Code Runner Structure Revision

7.1 PHP Files Review

In order to save more time for further implementation, it might be better to review
Code Runner on the main structure of plug-in files and decide which part of PHP
programming languages needs to be learned. Since PHP is a huge part programming
language, it is highly unlikely to learn it systematically within the project period.
Therefore, it is important to focus on main part that used by Code Runner and try
to make the implementation successful.

As mentioned in previous parts of the report, the most significant point is to make
sure the question creators are able to add more options under one question descrip-
tion. Hence, the focusing part is on files that relates to question creation, students
answer running and the background database process. By reading through the Code
Runner plug-in files, there are two files are coding about the above details, question-
type.php and question.php respectively.

On the one hand, questiontype.php is coded for question creation. It refers to some
database tables such as question coderuner options and coderunner categories which
have been mentioned in Chapter 5. The main function of this file is to save question
details including question description, testcases and programming language options,
as records into database tables. It also implements the deletion of testcases or ques-
tions from both Code Runner HTML interface and database tables. It enables Code
Runner to obtain the specified prototype from the database for current question con-
text. Also, questiontype.php allows Code Runner to import or export question from
Moodle XML format as Code Runner contains the list of test cases not answers, so
Code Runner needs to override it.

On the other hand, question.php is mainly coded for Code Runner behaviors. It is
able to get the question data, run the test cases based on students inputs, auto-mark

31

32

the grade and return feedback. It allows Code Runner to deal with those responses
to ensure students obtain correct mark and useful feedback.

Therefore, in the anti-cheat system, it is important for not only implementing the
new user interface but also have to make sure the new system maintains the rest
of configurations and functionality. In other words, the new system should work
normally as what Code Runner usually supposes to do.

7.2 Coding Structure

The main coding structure of Code Runner shows in Code Runner Structure in Ap-
pendices.

Where par1, par2 and par3 are parameters that passed into the functions, and
each function will be invoked based on user behaviours in Code Runner interface,
such as button click, or link review.

Chapter 8

Code Runner Implementation

After a review of the Code Runner structure and prototype have been both conducted,
this chapter will briefly describe the implementation made in Code Runner for GUI
interface and functionality.

8.1 User Interface Realization

Based on the prototype that has been built in previous chapters, the new anti-cheat
system should have a same user interface as the prototype. Recall the original question
creation page which shows in Figure 5.1 and Figure 5.2, it is necessary to keep the
configuration of question description and test cases fields, but adding a new part into
the page, which is called “Question Option”. In this case, as declared previously, each
question description contains several options, and each option is possible to have a
number of test cases. Afterward, when students are trying their unique options in
Code Runner, the Sandbox is able to retrieve the corresponding test cases and run
at the background. Therefore, for each defined test case in question creation page,
it is compulsory to specified which option it belongs to. Because question creator is
allowed to create options as many as possible for each question, “Question Option”
part enables user to add more blank choice by clicking “blanks for 3 more choices”
button. The initial number of blanks for creator is 5 which is same as “Test Cases”
part. The new implemented figures in question creation page are presented Figure 8.1
and Figure 8.2 respectively.
After the option part has been created, in the database of Code Runner, it is also

necessary to insert the sample answer for the corresponding option, so that lecturers
or students are able to review them if required after assignment has been due. Again,
the “Sample Answer” part in question creation refers to both option created and test
cases, which means each option is supposed to have its own sample answer. Therefore,
the structure of “Sample Answer” is similar to “Question Option” part, and present
in Figure 8.3.

33

34

Figure 8.1: Question Option part in question creation

Figure 8.2: Modified Test Cases part in question creation

35

Figure 8.3: Sample Answer part in question creation

So far, a new user interface for question creation part has been built up. Instead of
creating one question, the anti-cheat interface allows creator to create a number of
options and test cases.

8.2 New Database Table Creation and Schema Def-

inition

The new user interface is not operational, as there is no function defined for each part
of creation. In order to make it work, the first step is to create a new database table
with approach schema, then relate it to entire existed Moodle database.
As the figures show in the previous section, the new database needs to have columns
of option name, option text, and corresponding test cases for each option. The
relationship between newly created table and existed database can be done by linking
question ID where options belongs to in foreign key constraint. Hence, we are able to
embed a new table into the existed database. In other words, Code Runner could store
new data that defined in question creation page, retrieve them and delete them when
required, in SQL statement “Insert”, “Select”,“Delete” respectively. The schema
definition is presented in Figure 8.4, which is named mdl question options in Moodle
database.

36

Figure 8.4: Option table schema definition

Where Primary key is an auto number increment, and questionid becomes the foreign
key that relate to id in mdl question table. In this table, all features about test cases
are re-defined, from testcode to mark. Because based on the newly created anti-cheat
system, the test cases are not longer working for questions but options. Thus, all
functions about test cases in Code Runner will have to redirect to newly created
table, mdl question options, so that the exceptions from Sandbox won’t get caught.
Now, a new relationship in Code Runner has been built up and presented in Figure 8.5.

By now, a new database system has been defined, and the previous test cases table
is ignored and won’t be used in the system any longer. In order to prove the user
interface and new database system is actually working, one simple test has been
done. By defining two options under a question, new records were inserted into the
mdl question options table, which is presented in Figure 8.6.

In Figure 8.6, both options,Odd and Even, are defined under question ID = 57, but
for each of them, they are identical to both their own test cases and expected outputs.

37

Figure 8.5: New tables relationship in Code Runner

Figure 8.6: Data stored from new user interface

38

8.3 Functionality Implementation in Code Runner

After everything has been set up, we need to make sure the new anti-cheat system is
possible to bring a new question view of options to students as well as running sub-
missions based on corresponding test cases which are stored in mdl question options
table.
Fist of all, in which way that the options assign to each student is significant. It could
be done intentionally or make the assignment randomly. In this anti-cheat system,
the random assignment becomes more preferred.
The intentional assignment increases manual work-loads upon lecturers or question
creators, as for many courses that using Code Runner, the number of enrollments
are vary from 200 to 1000. It is highly unlikely to define more than 200 options by
creators to ensure every student has a unique question, if assignments are assigned by
name, then students are also possible to find out who have the same question option
based on their name(last name or first name). Then the system does not provide
a feasible anti-cheat. Therefore, random assignment could avoid this situation since
there is nothing to refer, to find out same question option holders. So, it makes more
difficult to cheat on assignment in Code Runner, which is what we suppose to achieve
at the end of the project.
In original Code Runner, it simply selects questions from the database in SQL state-
ment. Since we are now focus on options not question, in order to achieve our goal, in
it necessary to change the simply selection statement to random selection code. The
modified SQL statement is presented in Random Selection of Options in Appendices.

Therefore, after the modification made in option selecting statement, it is able
to pass the SQL statement result to student’s view interface which inheritances the
general interface structure but adding option description. Because of random assign-
ment, after trying several times, it is possible for students to try both options in their
attempts in terms of previous Boolean example. Preview version of both options,Even
and Odd, are presented in Figure 8.7 and Figure 8.8 respectively.

As mentioned in last chapter, all functions about test cases in Code Runner have been
redirected to newly created database table. Hence, for each particular option, such as
Odd or Even, the students’ submission will be run in the Sandbox upon corresponding
test cases. Therefore, in Figure 8.7 and Figure 8.8, different input answers based on
different options give the feedback about different test cases and individual marks.

8.4 Conclusion

The first idea, Personalized Assessment, has been successfully implemented in Code
Runner. With new user interfaces on question creation page and student view, a new
database table, schema and relationship have all been created and defined. The new

39

Figure 8.7: Preview of Even option and test

functionality of question creation and students’ submission handling are both imple-
mented. The new anti-cheat system maintains the original Sandbox functionality, but
makes it more difficult to cheat in Code Runner. Therefore, this anti-cheat system
achieves the project goal: push up barriers against cheating in Code Runner.

40

Figure 8.8: Preview of Odd option and test

Chapter 9

Similarity Check With Comments
Implementation

In earlier study we dismissed similarity checking as a feasible idea against plagiarism.
However, it could be still an useful for analysis purposes if comments are added to
distinct submissions.

9.1 Preparation

Since similarity checking in Code Runner is using the Brute Force approach by com-
paring similarity of each submission to the rest of submitted answers, the computa-
tionally expensive will be occurred. Before we implement it straightforward in Code
Runner, it is necessary to check whether the time penalty is acceptable in such algo-
rithm.

By using a for-loop in SQL statement, there are 10, 100 and 1000 records were
successfully inserted into Moodle Database. Creating a new .php file to test the time
performance of similarity checking in Brute Force. The output of the test shows that
the time penalty increases from 0.7 seconds when sample has the size of 10 records
to around 4.0 seconds when same has the size of 1000 records. The reason why test
sample is only up to 1000 records is because of the number of enrollments. It is
highly unlikely to believe that the number of enrollments will be much more than
1000. In order to make the implementation realistic, 1000 could be treated as the
highest sample size. In terms of testing result, the maximum time for Brute Force is
around 4 seconds which is acceptable by students. The content of testing .php file is
presented in Time Penalty Test in Appendices.
The content of testing file is based on the local machine which uses for Code Runner
testing.
Where similar text display above is an existed method in PHP library, and it is the

41

42

main method that used for Brute Force similarity check. The idea behind the algo-
rithm is divided and conquer. It works by finding the longest common string between
two inputs and breaking the long text into subsets around the string. Then process
the same idea in each subset by making recursive calls until it reaches character and
doing comparison. After all, it conquers each subset result and returns the number
of matching characters in percentage [7].

9.2 Implementation of Similarity Checking in Code

Runner

The similarity checking should be invoked after each submission handed in. Once
current Code Runner assignment becomes inactive, an overall similarity table should
be generated as a similarity summary for teacher review.
Based on features of Code Runner, after each attempt has been finished, Code Runner
will automatically bring students who just attempted the question back to “View”
page to see the total marks of the current question. In order to make each student
and teacher know about the similarity result, new implementation should have to
make “View” page be able to pop up a dialog to display the similarity percentage for
current attempt question. Therefore, this implementation should focus on view.php
file, and make code modification so that the above achievement will be realized. Be-
cause the pop-up dialog should be displayed before Code Runner brings students to
the mark table, so the implementation should be done before view.php being invoked.
Furthermore, checking upon each submission should be able to track name, Code
Runner ID as well as question ID where the highest similarity occurs. The code mod-
ification shown in Similarity Checking in Appendices presents the similarity checking
implementation and dialog invocation. The implementation is mainly refer to the
structure shows in Figure 9.1 [8].

Where responsesummary in database table gives students submissions.

Since during the assignment is active, Code Runner will only give the feedback about
the newest submission that one student just finished at each time. Hence, only one
record would be selected for submission comparison, and only the highest similar-
ity percentage will be recorded. In order to track the student details who has the
highest similarity percentage to current submission, table question attempts, table
question attempt steps and table user has been inner joined in terms of current ques-
tion ID. The output of the result is done in javascript, the similarity percentage has
been rounded up in 2 decimal places. The output for one submission checking is
presented in Figure 9.2.

43

Figure 9.1: Parts of relationships of Moodle database tables

Figure 9.2: Similarity pop-up dialog for one submission

44

As declared in previous sections, after current assignment being no longer active, a
similarity summary table will be generated based on each submission in the database.
The idea in this part is same as previous similarity checking above, only the highest
similarity percentage will be tracked and displayed. The code implementation is pre-
sented in Summary Similarity Table in Appendices.
Nested loop has been used in above implementation. Same records are retrieved from
a same database for both variables, recordsToBruteForce1 and recordsToBruteForce2.
In similarity checking, each object carried by each variable has been run through ex-
cept itself. As we only store the highest similarity percentage, if one object compares
to itself then every submission will definitely have 100% similarity. This implemen-
tation guarantees that the similarity of each submission is compared with the rest of
submissions.
Where similarity of each submission will be located to corresponding attempt in an
array each time. After all, key and value in the array will be retrieved one by one and
make an output. The output will present at the top of current course page, shown in
Figure 9.3.

Figure 9.3: Similarity pop-up dialog for one submission

9.3 Analysis

So far, similarity checking with comments has been successfully implemented into
Code Runner. Refer to my testing result, although Brute Force has been used when

45

we check the similarity between new submission and the rest of submitted answers,
the time performance is acceptable. In other words, Code Runner is able to give
feedback to student under an acceptable duration of run time, less than 2 seconds in
the test when the sample size is 100 in Code Runner. Recall that there is around
85% of questions in Code Runner have been reused, which implies that students could
copy and paste the corrected submissions from someone else who has passed the Code
Runner test in previous years. With comments required, this issue could be highly
reduced in terms of different comments added by different students. Therefore, the
implementation in this part helps the University of Auckland to avoid one of the
significant downsides that existed in Code Runner.
After comments are required for each student to answer the Code Runner question,
the similarity between submissions are reduced quite a lot, from 100% to around
69%. Notice that this is for the program with code length of only 7 lines. Based
on the Similarity Checking Research(without comments) result in Chapter 3, the
median length of coding part in Code Runner is around 30 lines, it is likely to see
that similarity between submissions will be much lower if students are required to
add comments for their programmings.

9.4 Conclusion

This is a feasible idea against assignment cheating in Code Runner. Time penalty
and performance check are both acceptable. Since comments are mainly based on
personal thoughts, comments-requirement will efficiently separate short programs.
Hence, similarity checking with comments is highly recommended to be implemented
in Code Runner to build up a better anti-cheating system.

Chapter 10

Limitation and Summary

10.1 Objective Evaluation

We have built a new anti-cheat system that maintains the most functionality of Code
Runner system, it allows adding more than one option in question creation and re-
quired comments for students’ answers to make similarity checking possible. As we
known, there is also a similar system called ’Question Bank’ exists in Code Run-
ner, the main difference between new anti-cheat system and Question Bank is that
Question Bank asks question creator to create different questions. Hence, it cannot
guarantee that the difficulty of each created question are even. However, in new anti-
cheat system, as each option bases on each question description, the system is able
to give similar assignments to student which avoids unfair assignments.

Nevertheless, any anti-cheat system may not be able to guarantee that there is not
possible to cheat in Code Runner. So, students could still cheat by asking someone
else to do the assignment for them. Also, for Stage I courses, there are usually more
than 500 students for each Computer Science course, it is highly unlikely to expect
that lecturers or question creators will create more than 500 options for each ques-
tion, which implies that cheating is still possible by finding same option offered and
copy-pasting solutions.

In case of similarity checking in comments-requirement, most programming languages
will ignore the comment contents, and Code Runner does the same thing. Even
though cheat is able to be detected, it simply makes the comparison between raw
texts instead of considering the content of comments. Therefore, the possibility of
random comments added would be occurred.

46

47

10.2 Conclusion

Code Runner is a free and open-source Moodle question-type plug-in that lets teach-
ers set questions where the answer is program code. Students are able to develop
and test their code using a normal development environment and submit through
web browsers [9]. However, being not able to detect cheating is the most significant
weakness of Code Runner, and might lead to negative effects among students.

This study bases on the vulnerability of Code Runner to discuss ideas that could
be possible to prevent Code Runner from cheating. Research about similarity check-
ing, programming variation and questions recycling have all been done. The research
results show that due to short programming length, a high probability of similar sub-
missions occurs frequently in Code Runner. It indicates that the idea about checking
similarity without comments is not an effective way to prevent cheating. Furthermore,
from the result of Programming Variation, students can possibly search solutions on-
line or do programming languages translations to achieve higher marks. So it is unfair
to hard-working students and might cause a loss of faith in Code Runner. Last but
not least, questions recycling is widely detected in Code Runner, which provides a
easy way for students to get an easy pass on the course. However, this plagiarism can
be solved by restricting students access after they have completed the course.

More variants can be defined in one question became one feasible idea to be im-
plemented. In order to prove that new functionality is possible to be added in Code
Runner and matches the corresponding database schema, proof-of-concept process
has been successfully conducted by building up a prototype in Java program.

In Code Runner implementation, two ideas have been realized by making code modifi-
cation. On one hand, bring the idea of personalized assessment from proof-of-concept
to Code Runner, which guarantees that options are randomly assigned to random
students. The option for every student may not be unique due to the large number
of enrollment and less options created. Nevertheless, this implementation actually
makes cheating much more difficult in Code Runner as it is hard to find out for stu-
dents which options are assigned. On the other hand, once Code Runner requires
students to add comments, it not only helps students to have a better understanding
on learning outcomes, but also reduce the similarity of short coding so that similarity
checking becomes possible and feasible. Both ideas are reliable to build up a better
anti-cheat system.

10.3 Future Work

Due to Code Runner is well conducted on auto-marking part while not good at ques-
tion(option) auto-generation, the effectiveness is reduced a lot. As instructors have

48

to define as many options as possible to make sure each student will obtain a unique
assessment, manual works are costly. In the future work, the ideas from Problets [10]
will need to be introduced into Code Runner. Since it is really good at question auto-
generation part by creating one general case, make the replacement of key variables
based on each student ID, it can be used for a long time [11].

Nonsense comments provided by students is another limitation for idea Similarity
Checking with Comments in Code Runner. It would be necessary to build up a
comment-network by importing training set of comments about different topics, it
actually relates to artificial intelligent. Also, new software tools will have to be in-
troduced into Code Runner in order to retrieve students comment inputs and make
further analysis.

Although there are probably still other limitations that we haven’t explored yet,
the new system has improved the weakness of anti-cheat quite a lot in Code Runner.
More research and ideas would have to be conducted in order to against plagiarism
in Code Runner.

Bibliography

[1] J.Cole, H.Foster, Using Moodle:Teaching with the popular open source
course management system, 0’Reilly Media, Inc, 2007.

[2] M.Org, Pedagogy(2013). Retrieved from
URL http://docs.moodle.org/23/en/Pedagogy.

[3] R.Lobb,CODE RUNNER(2013). Retrieved From
URL https://github.com/trampgeek/CodeRunner.

[4] CopyScape. Online diff checker.
URL http://www.copyscape.com/compare.php.

[5] SortSearch. Retrieved from
URL http://interactivepython.org/runestone/static/pythonds/

[6] Wikipedia. Retrieved from
URL https://en.wikipedia.org/wiki/MySQL.

[7] StackOverflow. Retrieved from
http://stackoverflow.com/questions/14136349/how-does-similar-text-work.

[8] Overview of the Moodle question engine. Retrieved from
https://docs.moodle.org/dev/Overview of the Moodle question engine#Database tables

[9] R.Lobb, J.Harlow. Code Runner: A Tool for Assessing Computer Program-
ming Skills. The University of Cantebury.

[10] Amruth N.Kumar. Automated Generation of Self-Explanation Questions in
Worked Examples in a Model-Based Tutor. Ramapo College of New Jersey,
Mahwah, UAS.

[11] S.Manoharan. Personalized Assessment as a Means to Mitigate Plagiarism.
The University of Auckland.

49

Appendices

50

51

.1 Code Runner Structure

<?php
pub l i c func t i on functionName () (par1 , par2 , p a r 3){

funct ion implementat ion goes here ;

r e turn xxx ;
.
.
.

pub l i c func t i on functionName () (par1 , par2 , p a r 3){

funct ion implementat ion goes here ;

r e turn xxx ;
}

.2 Random Selection of Options

pub l i c func t i on l o a d f o r c a c h e ($que s t i on id) {
g l o b a l $DB;
$quest iondata = $DB−>g e t r e c o r d s q l (’

SELECT qo . optionname , qo . opt iontext , q .∗ , qc . contex t id
FROM { ques t i on } q
JOIN { q u e s t i o n c a t e g o r i e s } qc ON q . category = qc . id
JOIN { q u e s t i o n o p t i o n s } qo ON qo . que s t i on id = q . id
WHERE q . id = : id
ORDER BY RAND()
LIMIT 1 ’ , array (’ id ’ => $que s t i on id) , MUST EXIST) ;

g e t q u e s t i o n o p t i o n s ($quest iondata) ;
r e turn $quest iondata ;

}

.3 Time Penalty Test

<?php
$t ime pre = microtime (t rue) ;
$servername = ” l o c a l h o s t ” ;
$username = ” root ” ;
$password = ” l i n q i 5 2 0 ” ;

$ inputSt r ing = ” pub l i c s t a t i c S t r ing checkEven (i n t number)

52

{
St r ing isEven = ’ f a l s e ’ ; i f (number%2==1){ i sEven = ’ true ’ ;

}
r e turn isEven ;
}” ;

// Create connect ion
$conn = mysql connect ($servername , $username , $password) ;

// Check connect ion
i f (! $conn) {

d i e (” Connection f a i l e d : ” . m y s q l i c o n n e c t e r r o r ()) ;
}
echo ”Connected s u c c e s s f u l l y ! ! \ r\n ” ;

$usemoodle = ’ use moodle ’ ;
$exec = mysql query ($usemoodle , $conn) ;

$ s q l = ’SELECT t e s t i n g FROM for l oop ’ ;
$ r e t v a l = mysql query ($sq l , $conn) ;

i f (! $ r e t v a l) {
d i e (’ Could not get data : ’ . mysq l e r ro r ()) ;

}

whi le ($row = m y s q l f e t c h a s s o c ($ r e t v a l)) {
echo ” t e s t i n g Code :{ $row [’ t e s t i ng ’] } \ r\n ” .
s i m i l a r t e x t ($row [’ t e s t i ng ’] , $ inputStr ing , $percent) ;
echo ” S i m i l a r i t y percentage : ” . $percent . ”\ r\n ” ;

”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−\r\n ” ;
}

mysq l c l o s e ($conn) ;
$t ime post = microtime (t rue) ;
$exec t ime = $t ime post − $t ime pre ;
echo ” Total time usage : ” . $exec t ime ;
?>

.4 Similarity Checking

$sqlGetnewestRecord = ’SELECT responsesummary ’ .
’FROM { ques t i on at tempts } ’ .
’WHERE responsesummary != ”” ’ .
’ORDER BY id DESC ’ .

53

’LIMIT 1 ’ ;
$newRecord = $DB−>g e t r e c o r d s s q l ($sqlGetnewestRecord) ;
f o r each ($newRecord as $newestone){

$ s t r i n g 1 = $newestone−>responsesummary ;
}

$sqlStatement = ’SELECT responsesummary , que s t i on id ’ .
’FROM { ques t i on at tempts } ’ .
’WHERE responsesummary != ””

AND id < (SELECT MAX(id) FROM { ques t i on at tempts }) ’ ;
$ r e co rds = $DB−>g e t r e c o r d s s q l ($sq lStatement) ;
$h ighe s t = 0 . 0 ;

f o r each ($ r eco rds as $record){
$ s t r i n g 2 = $record −> responsesummary ;
s i m i l a r t e x t ($ s t r ing1 , $ s t r ing2 , $percent) ;
i f ($percent > $h ighe s t){

$h ighe s t = $percent ;
$quest ionID = $record −> que s t i on id ;
$sq lStatement2 = ’SELECT f i r s tname , lastname , u s e r i d

’ .
’FROM { ques t i on at tempts } , { que s t i on a t t empt s t ep s } , { user }

’ .
”Where responsesummary = ’ $s t r ing2 ’
AND que s t i on id = ’ $questionID ’
AND { ques t i on at tempts } . id =
{ que s t i on a t t empt s t ep s } . ques t ionattempt id
AND { que s t i on a t t empt s t ep s } . u s e r i d = { user } . id ” ;

$ u s e r d e t a i l s = $DB −>g e t r e c o r d s s q l ($sq lStatement2) ;
f o r each ($ u s e r d e t a i l s as $ u s e r d e t a i l)

$userID = $ u s e r d e t a i l −> u s e r i d ;
$f i rstName = $ u s e r d e t a i l −> f i r s tname ;
$lastName = $ u s e r d e t a i l −> lastname ;

}
}
echo ’< s c r i p t language=” j a v a s c r i p t ”> ’;
echo ’ a l e r t (”The newest submiss ion has the l a r g e s t ’ . round ($highest , 2) .
’% o f s i m i l a r i t y \ r\n \ r \nIn ques t i on ID= ’ .
$quest ionID . ’\ r\n \ r\nTo ’ . $ f i rstName . ’ ’ . $lastName . ’ .
In User ID= ’ . $userID . ’ . ”) ’ ;
echo ’</ s c r i p t > ’ ;

54

.5 Summary Similarity Table in Appendices

$sqlStatement3 = ’SELECT responsesummary ’ .
’FROM { ques t i on at tempts } ’ .
”WHERE responsesummary != ’ ’ AND que s t i on id = ’ $questionID ’ ” ;

$recordsToBruteForce1 = $DB −>g e t r e c o r d s s q l ($sq lStatement3) ;

$recordsToBruteForce2 = $DB −> g e t r e c o r d s s q l ($sq lStatement3) ;

$ s im i l a r i tyPer c en tageAr ray = array () ;

f o r each ($recordsToBruteForce1 as $recordToBruteForce1){
$ s t r i n g 3 = $recordToBruteForce1−>responsesummary ;
$ h i g h S i m i l a r i t y = 0 . 0 ;
f o r each ($recordsToBruteForce2 as $recordToBruteForce2){

i f ($recordToBruteForce1 != $recordToBruteForce2){
$ s t r i n g 4 = $recordToBruteForce2 −> responsesummary ;
s i m i l a r t e x t ($ s t r ing3 , $ s t r ing4 , $outputPercent) ;
i f ($outputPercent>$ h i g h S i m i l a r i t y) {

$ h i g h S i m i l a r i t y = $outputPercent ;
}

}
}
array push ($s imi l a r i tyPercentageArray , round ($h i ghS im i l a r i t y , 2)) ;

}

echo ”<f ont s i z e =’5’>The h ighe s t s i m i l a r i t y o f submiss ion to the
r e s t o f submiss ion (f o r cur rent ques t i on)

”;

echo ”<f ont s i z e =’3’>Attempt No . ”.
s t r r e p e a t (’ ; ’ , 20).”< strong><f ont s i z e =’3’>
S i m i l a r i t y Percentage(%)
”;

f o r each ($ s im i l a r i tyPer c en tageArray as $key=>$value){
$attemptNumber= $key +1;
echo ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
”;
echo ”$attemptNumber” . s t r r e p e a t (’ ; ’ , 4 5) . ” $value
”;

}

